#
  • Djillali Liabes University, Sidi Bel Abbes
  • CUPAGIS@univ-sba.dz
  • (+213)48 79 90 15

CUPAGIS

Description

Precision agriculture is a set of principles and technologies to optimize the management of agricultural land, to improve yields and to make the investments profitable. TRADITIONAL AGRICULTURE is based on the principle of the homogeneity of agricultural plots in the production cycle, principle which consists in applying cultural interventions (tillage, sowing, fertilization, crop protection) uniformly on each plot. However, the heterogeneity of the soils, translated by variations in pH, organic matter content, topography, etc. constitutes a source of significant variability for agricultural production. Over the past two decades, the context has changed: the GPS (Global Positioning System) localization system, on-farm computing, on-board electronics, ground sensors, soil analysis and remote sensing imagery make it possible to access, in particular by the yield maps, to a precise knowledge of this variability and to carry out interventions adapted. This new context was at the origin of the development of precision agriculture, a concept that we can express <the right intervention at the right place and at the right time>, and whose first applications appeared in the early 1980s, and which is becoming widespread in the agricultural world. Precision agriculture seeks to better take into account the variability of environments and conditions between different plots as well as at intra-plot scales. In comparison with traditional agriculture, it uses new information and digital technologies, such as imagery by remote sensing, measurement systems (sensors or in situ measurement), data sharing, monitoring systems GPS location and geographic information systems. These methods and tools are an important approach to allow agriculture to be more respectful of the environment while remaining productive, and makes it possible to better understand and analyze the physiological needs of crops and develop tools to help decision for the user. In this context, this professional Master offer, which is the first to focus on this field in our country, aims to train students to a double skill: solid knowledge and know-how in agronomy and in biology, and mastery of digital technologies. Human skills with this versatility are still extremely rare in our country, which hinders the promotion of precision agriculture on a large scale, especially for large crops, but also its acceptance by entrepreneurs and agricultural operators in the field. This training offer is therefore part of an overall national effort that aims to rationalize the use of agricultural land, rationalize the use of water and fertilizers, and adapt agricultural mechanization to the needs of agriculture in our country. This degree in Precision Agriculture is offered as part of the European project CBHE / CUPAGIS (https://www.cupagis.eu, New Curricula in Precision Agriculture Using GIS Technologies and Sensing Data) ”New Programs in Precision Agriculture Using Technologies GIS and Remote Sensing”, where a team of teachers is hired to master the teaching of the subjects of this Master.

Read More
28

Students

16 

professor

17

Courses

4

Semesters 

CUPAGIS  Principles oF  precision Agriculture

 Intra-plot variability

img

It is the measurement within an agricultural plot of the heterogeneity in soil, crops, pests, yields, altitude, soil water and soil nutrients…in the space and in time. Spatial variability: Variability at a given instant. Temporal variability: Variability over time. Decision support system: Design, Choose, Implement, Actions to optimize the management of the agricultural plot.

Data collection

img

First, precision agriculture needs to collect data. The weather is an essential information in agriculture via connected weather stations. Temperature, humidity, rainfall, atmospheric pressure, wind speed and direction are available in classical stations (some stations add the duration of sunshine, UV radiation, ground temperature)... The farmer needs to know the state of his land. For example, humidity sensors, on different points of the agricultural plot, allow him to have remote visibility on the water needs of his crops. Precision agriculture also relies on images taken by satellites or drones to characterize the state of vegetation and soil. Getting information by drones or satellites allows the development of very precise agronomic maps.

Decision making

img

Once the data has been collected, the precision farmer will use a computer environment to visualize his farm, to draw and modify the boundaries of his fields; 

import data from sensors, in order to accurately map observations and operations. Agriculture will be able to make decisions to optimize the use of inputs using soil nutrient maps (pH, nitrogen, etc.); 

analyze specific field performance data to find the best performing fields; simplify nutrient management plans with an easy-to-export format and ultimately visualize the agricultural plot and sort fields by characteristics such as crops or input application.

CUPAGIS MASTER

  MAin Courses

#

Bioinformatics

#

Data analytics

#

Image Processing and Computer Vision

#

Statistics

#

GIS for Precision Agriculture

Staff Member

Program

Description

1- Semestre

 

Unité d’Enseignement

VHS

V.H hebdomadaire

Coeff.

Crédits

Mode d'évaluation

14-16 sem.

C

TD

TP

Travail personnel

Continu 40%

Examen 60%

UE Fondamentale (P-E)

 

 

 

 

 

UEF 1

 

 

 

 

 

 

18

 

 

Remote sensing and application of earth and environment related to precision agriculture

67h30'

1h30'

1h30'

1h30'

82h30'

3

6

X

X

Les SIG en agriculture de précision I

67h30'

1h30'

1h30'

1h30'

82h30'

3

6

X

X

Soil properties and its measurement

67h30'

1h30'

1h30'

1h30'

82h30'

3

6

X

X

UE Méthodologie (B-A-B)

 

 

 

 

 

UEM

 

 

 

 

 

 

9

 

 

B.P.A.C.T.E

 

45h

1h30'

1h30'

-

55h

2

4

X

X

Biomathématiques et analyse des données

60h

1h30'

1h00

1h30'

65h

3

5

X

X

UE Découverte

 

 

 

 

 

UED1

 

 

 

 

 

 

2

 

 

A.N.T.S.T

45h

1h30'

1h30'

-

5h

2

2

X

X

UE Transversale

 

UET1

 

 

 

 

 

 

1

 

 

Communication

22h30'

1h30'

-

-

     2h30'

1

1

X

X

Total Semestre 01

375

10h30’

08h30’

06h

375h

17

30

 

 

 

* Basics of the Precision agriculture – characteristics, technologies, economic efficiency, optimal use of resources (B.P.A.C.T.E).

*Acceptation des nouvelles technologies «sur le terrain » (A.N.T.S.T).

 

 

 

 

2- Semestre02 :         

 


Unité d’Enseignement

VHS

V.Hhebdomadaire

Coeff.

Crédits

Mode d'évaluation

 

14-16 sem.

C

TD

TP

Travail personnel

Continu 40%

Examen 60%

 

UE fondamentale (P-E)

 

 

UEF1

 

 

 

 

 

 

18

 

 

 

Course of sentinel 1 2 3 imagery for agriculture field monitoring

67h30'

1h30'

1h30'

1h30'

 82h30'

3

6

X

X

 

Les SIG en agriculture de précision II

67h30'

1h30'

1h30'

1h30'

82h30'

3

6

X

X

 

Application of Precision Agriculture for crops growing

67h30'

1h30'

1h30'

1h30'

 82h30'

3

6

X

X

 

UE méthodologie (B-A-B)

 

 

UEM1

 

 

 

 

 

 

9

 

 

 

Sensors In Precision Agriculture

60h

1h30'

1h00

1h30'

65h

3

5

X

X

 

Protection des Plantes Cultivées

45h

1h30'

1h00'

1h00'

55h

2

4

X

X

 

 UED Découverte

 

 

UED1

 

 

 

 

 

 

2

 

 

Technologies Web

45h

1h30'

1h30'

-

 5h

2

2

X

X

UE transversale

 

 

UET1(O/P)

 

 

 

 

 

 

1

 

 

Législation

22h30'

1h30'

 

 

2h30'

1

1

X

X

Total Semestre 02

375h

10h30’

08h00’

07h00'

375 h

17

30

 

 

 

 

 

 


3- Semestre03 :

 


Unité d’Enseignement

VHS

V.H hebdomadaire

Coeff

Crédits

Mode d'évaluation

14-16 sem.

C

TD

TP

Travail Personnel

Continu 40%

Examen 60%

UE Fondamentale (P-E)

 

UEF1

 

 

 

 

 

 

18

 

 

Cultures maraichères spéciales

67h30'

3h

 

1h30'

 82h30'

3

6

X

X

Agrumiculture

67h30'

3h

 

1h30'

 82h30'

3

6

X

X

Mechanization in precision farming

67h30'

3h

1h30'

 

 82h30'

3

6

X

X

UE Méthodologie

 

UEM 1(O/P)

 

 

 

 

 

 

9

 

 

Anglais

60h

1h30'

1h30'

1h

       65h

3

5

X

X

Technique de recher.Biblio.et Rédact.

45h

1h30'

1h30'

-

       55h

2

4

X

X

UE Découverte

 

Start-up initiatives for future farmers

45h

1h30'

-

1h30'

5h

2

2

 

 

UE Transversales

 

UET 1 (O/P)

 

 

 

 

 

 

1

 

 

Agricultural economy & entrepreneurship

22h30'

1h30'

-

-

2h30'

1

1

X

X

Total Semestre 03

375h

15h00’

4h30’

5h30’

375h

17

30

 

 

 

 

 

 

 

 

 

 

 

 


4- Semestre04 :

 

Domaine         : S.N.V.

Filière             : Sciences Agronomiques     

Spécialité        : Agriculture de précision

 

Un stage est réalisé au sein d’une structure de recherche ou en entreprise sanctionné par un mémoire et une soutenance sur un thème de recherche proposé, encadré (ou Co-encadré) par un ou deux enseignants-chercheurs

 

 

 

VHS

Coeff

Crédits

Travail Personnel

600h00'

15

25

Stage en entreprise

 150h00'

 2

05

Séminaires

-

-

-

Autre (préciser)

-

-

-

Total Semestre 04

750 h

17

30

 

 

5 - Récapitulatif global de la formation :

 

                          UE

   VH

UEF

UEM

UED

 

UET

Total

Cours

270h00'

135h00' 

67h30'

 

67h30'

540h00'

TD

 157h30'

 120h00'

    45h00'

 

-

  322h30'

TP

180h00'

 60h00'

22h30'

 

-

  262h30'

Travail personnel

 742h30'

360h00'

    15h00'

 

 7h30'

1.125h00'

Autres (Stage – Mémoire)

600h00'

150 h00'

-

 

-

750h00'

Total :

1950h

825

150h

 

75h

3000h

Total Crédits :

 74

 37

 6

 

       3

120

% en crédits

pour chaque UE :

61,67%

30,83%

5%

 

2,50%

100%

 

Read More

Get In Touch