Faculty of Technology
Department of E.B. $\mathcal{S} . \& \mathcal{T}$.

Exam of module : Maths 1

Duration: 1h. 30
Tuesday 16/01/2024

Exercise 1. (Applications 4pts)Prove that the application f is bijective and give its inverse application f^{-1}.

$$
\begin{aligned}
f:[-1,1] & \longrightarrow[-1,1] \\
x & \longmapsto \frac{2 x}{1+x^{2}} .
\end{aligned}
$$

correction

a. is f bijective?

Let $y \in[-1,1]$, we solve the equation $y=f(x)$.
We have

$$
\begin{aligned}
y=f(x) & \Leftrightarrow y=\frac{2 x}{1+x^{2}} \\
& \Leftrightarrow y x^{2}-2 x+y=0 .
\end{aligned}
$$

We solve the second-order equation with the discriminant
$\Delta=b^{2}-4 a c=4\left(1-y^{2}\right) \geq 0 . \quad 0.5 \mathrm{pt}$
The solutions are
$x_{1}=\frac{2-\sqrt{4(1-y)^{2}}}{2 y}=\frac{1-\sqrt{1-y^{2}}}{y}$
and $\quad x_{2}=\frac{2+\sqrt{4\left(1-y^{2}\right)}}{2 y}=\frac{1+\sqrt{1-y^{2}}}{y}$
$x_{2} \notin[-1,1]$ because $1+\sqrt{1-y^{2}} \geq 1$ and $y \in[-1,1]$
$x_{1} \in[-1,1]$ indeed
$x_{1}=\frac{1-\sqrt{1-y^{2}}}{y}=\frac{y}{1+\sqrt{1+y^{2}}}$.
Since $1+\sqrt{1+y^{2}} \geq 1$ and $y \in[-1,1]$, then $x_{1} \in[-1,1] \quad 1 \mathrm{pt}+1 \mathrm{pt}$
Therefore

$$
\forall y \in[-1,1], \exists!x=\frac{1-\sqrt{1-y^{2}}}{y} \in[-1,1], y=f(x)
$$

this shows that f is bijective. 0.5 pt
b. The inverse f^{-1} of f. 01 pt

$$
\begin{aligned}
f^{-1}:[-1,1] & \longrightarrow[-1,1] \\
y & \longmapsto f^{-1}(y)=\frac{1-\sqrt{1-y^{2}}}{y} .
\end{aligned}
$$

Exercise 2. (Complex numbers 4pts) Give the algebraic, trigonometric and exponential form of the solutions of the following equation :

$$
z^{2}-(1+2 i) z+(i-1)=0 .
$$

correction

Solve in \mathbf{C} the equation : $z^{2}-(1+2 i) z+i-1=0$.
The discriminant is :

$$
\begin{aligned}
\Delta=b^{2}-4 a c & =(1+2 i)^{2}-4(i-1) \\
\Delta & =1-4+4 i-4 i+4 \\
\Delta & =1.1 p t
\end{aligned}
$$

Then
$z_{1}=\frac{1+2 i+1}{2}=1+i \quad$ and $\quad z_{2}=\frac{1+2 i-1}{2}=i$
The algebraic form : 1 pt
$z_{1}=1+i \quad$ and $\quad z_{2}=i$
The trigonometric form : 1 pt
$\left|z_{1}\right|=\sqrt{2}, \quad \operatorname{Arg}\left(z_{1}\right)=\frac{\pi}{4} \quad$ and $\quad z_{1}=\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)$
and
$\left|z_{2}\right|=1, \quad \operatorname{Arg}\left(z_{1}\right)=\frac{\pi}{2} \quad$ and $\quad z_{2}=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)$
The exponential form : 1 pt
$z_{1}=\sqrt{2} e^{i \frac{\pi}{4}} \quad$ and $\quad z_{2}=e^{i \frac{\pi}{2}}$
Exercise 3. (Sequences 6pts). We consider the numerical sequences $\left(u_{n}\right)$ such that:
$u_{0}>1$ and $\forall n \in \mathbb{N}, u_{n+1}=2-\frac{1}{u_{n}}$.

1. Prove that: $\forall n \in \mathbb{N}, u_{n}>1$.
2. Study the monotony of this sequence.
3. Deduce that the sequence $\left(u_{n}\right)_{n}$ is convergente and specify its limit.

correction

1. We prove by induction that : $\forall n \in \mathbb{N}, u_{n}>1$. 2 pts

We denote $\left(H_{n}\right):\left(u_{n}>1\right)$
a. For $n=0$ We have $u_{0}>1$, then $\left(H_{n}\right)$ is satisfied.
b. We assume that $\left(H_{n}\right)$ is satisfied for $n>0$ and we demonstrate that H_{n+1} is also satisfied. We have : $u_{n+1}=2-\frac{1}{u_{n}}>2-\frac{1}{1}$ because $u_{n}>1$
then $u_{n+1}>1$ this shows that H_{n+1} is satisfied.

Using the recurrence theorem, we deduce that $\left(H_{n}\right)$ is true for all $n \in \mathbb{N}$, then :

$$
\forall n \in \mathbb{N}, \quad u_{n}>1
$$

2.The monotony. 2 pts

We study the sign of $\left(u_{n+1}-u_{n}\right)$, we have :
$u_{n+1}-u_{n}=2-\frac{1}{u_{n}}-u_{n}=\frac{2 u_{n}-1-\left(u_{n}\right)^{2}}{u_{n}}=-\frac{\left(u_{n}-1\right)^{2}}{u_{n}}$
Since $u_{n}>1>0$, we deduce that

$$
\forall n \in \mathbb{N}, \quad\left(u_{n+1}-u_{n}\right)<0
$$

This shows that $\left(u_{n}\right)_{n}$ is decreasing
3.a. Convergence of the sequeence $\left(u_{n}\right)_{n}$. 1 pt

Since this sequence is decreasing and bounded below (by 1) we deduce that it is convergente
3.b. The limit. 1 pt

Let $\mathrm{l}=\lim _{n \rightarrow+\infty} U_{n}$, and since

$$
\forall n \in \mathbb{N}, u_{n+1}=2-\frac{1}{u_{n}}
$$

By taking the limit, we obtain :

$$
l=2-\frac{1}{l}
$$

and the only solution to this equation is : $(l=1)$, then $: \lim _{n \rightarrow+\infty} U_{n}=1$
Exercise 4. (Real functions 6pts).

1. Using the intermidiate value theorem, prove that the equation $\left(x^{3}+x^{2}-4 x+1=0\right)$ has at least one solution $\left.x_{0} \in\right] 0,1[$
2. Using l'Hopital's Rule, calculate the following limits : $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{\sin ^{2}(x)}, \quad \lim _{x \rightarrow 0} \frac{\arctan (x)}{x+x^{2}}$.
3. Study the continuity and differentiability of the following function:

$$
f(x)= \begin{cases}x^{3} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

correction

1. Using the intermidiate value theorem, verify that the equation $\left(x^{3}+x^{2}-4 x+1=0\right)$ has at least one solution $\left.x_{0} \in\right] 0,1\left[\right.$. If we consider the function $f(x)=x^{3}+x^{2}-4 x+1$, then :
f is a continuous function on $[0,1]$ and $f(0)=1$ and $f(1)=-1$, then $(f(0) f(1)<0)$. $0.5 \mathrm{pt}+0.5 \mathrm{pt}$
From the intermediate value theorem, we deduce that ($\left.\exists x_{0} \in\right] 0,1\left[; f\left(x_{0}\right)=0\right)$, this shows that the equation $\left(x^{3}-4 x^{2}+6=0\right)$ has at least one solution $\left.x_{0} \in\right] 0,1[0.5 \mathrm{pt}+0.5 \mathrm{pt}$
2. - We have $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{\sin ^{2}(x)}=\frac{0}{0}$ it is an indeterminate form. If we set $f(x)=\ln \left(1+x^{2}\right)$ and $g(x)=\sin ^{2}(x)$,
then $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{\frac{2 x}{1+x^{2}}}{2 \sin (x) \cos (x)}=\lim _{x \rightarrow 0} \frac{x}{\sin (x)} \frac{1}{\left(1+x^{2}\right) \cos (x)}=1$, and using l'Hopital's Rule, we obtain :
$\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{\ln \left(1+x^{2}\right)}=1 \quad 1 \mathrm{pt}$

- We have $\lim _{x \rightarrow 0} \frac{\arctan (x)}{x+x^{2}}=\frac{0}{0}$ it is an indeterminate form. If we set $f(x)=\arctan (x)$ and $g(x)=x+x^{2}$, then $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x^{2}}}{1+2 x}=1$, and using l'Hopital's Rule, we obtain : $\lim _{x \rightarrow 0} \frac{\arctan (x)}{x+x^{2}}=1 \quad 1 \mathrm{pt}$

3.

$$
f(x)= \begin{cases}x^{3} \sin \left(\frac{1}{x}\right) & \text { si } x \neq 0 \\ 0 & \text { si } x=0\end{cases}
$$

- The cotinuity 1 pt
f is continuous on \mathbb{R}^{*}
Continuity at $x_{0}=0$:
We calculate $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{x}\right)$
We have $:-1 \leq \sin \left(\frac{1}{x}\right) \leq 1 \Longrightarrow \begin{cases}-x^{3} \leq x^{3} \sin \left(\frac{1}{x}\right) \leq x^{3} & \text { if } x>0 \\ x^{3} \leq x^{3} \sin \left(\frac{1}{x}\right) \leq-x^{3} & \text { if } x<0\end{cases}$
By taking the limit we obtain $\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{x}\right)=0$
Then f is continuous at 0 . Consequently it is continuous on \mathbb{R}
- The differentiability 1 pt
f is differntiable on \mathbb{R}^{*}
Differentiability at $x_{0}=0$:
We calculate $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{3} \sin \left(\frac{1}{x}\right)-0}{x}=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$.
We have $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1 \Longrightarrow-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}$
By taking the limit we obtain $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$
Then f is differentiable at 0 . Consequently it is differentiable on \mathbb{R}.

