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Abstract

In this paper we study a class of Lorentz invariant nonlinear field equations
in several space dimensions. The main purpose is to obtain soliton-like solutions
with twice (r, p)-Laplacian. The fields are characterized by a topological invari-
ant, which we call the charge. We prove the existence of a static solution which
minimizes the energy among the configurations with nontrivial charge.
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1 Introduction

A soliton is a solution of a field equation whose energy travels as a localized packet
and which preserves its form under perturbations. In this respect solitons have a
particle-like behavior and they occur in many areas of mathematical physics, such
as classical and quantum field theory, nonlinear optics, fluid mechanics, and plasma
physics; see [8]. Probably, the simplest equation which has soliton solutions is the
sine-Gordon equation,

−∂
2ψ

∂x2
+
∂2ψ

∂t2
+ sinψ = 0, (1.1)



2 Derrick’s Problem with (r, p)-Laplacian

where ψ = ψ(x, t) is a scalar field, x, t are real numbers representing, respectively, the
space and the time variable. Derrick, in a celebrated paper [7], considers the more
realistic three-space-dimension model,

−∆ψ +
∂2ψ

∂t2
+ V ′(ψ) = 0, (1.2)

∆ being the 3-dimensional Laplace operator and V ′ is the gradient of a nonnegative
C1 real function V. In [7] it is proved by a simple rescaling argument that (1.2) does
not possess any nontrivial finite-energy static solution. This fact leads the author to
say, “We are thus faced with the disconcerting fact that no equation of type (1.2) has
any time-independent solutions which could reasonably be interpreted as elementary
particles.” Derrick proposed some possible ways out of this difficulty. The first proposal
was to consider models which are the Euler-Lagrange equations of the action functional
relative to the functional

S =

∫∫
Ldxdt,

where the Lorentz invariant Lagrangian density proposed in [7] has the form

L(ψ) = −
(
|∇ψ|2 − |ψt|2

) p
2 − V (ψ), p > 3. (1.3)

However, Derrick does not continue his analysis and he concludes that a Lagrangian
density of type (1.3) leads to a very complicated differential equation. He has been
unable to demonstrate either the existence or nonexistence of stable solutions. In this
spirit, a considerable amount of work has been done by Benci and collaborators, and
a model equation proposed in [2]. The Lorentz invariant Lagrangian density proposed
in [2] has the form

ρ = |∇ψ|2 − |ψt|2; α(ρ) = aρ+ b|ρ|
p
2 , p > n,

L(ψ, ρ) = −1

2
α(ρ)− V (ψ). (1.4)

In the case where p is constant, various mathematical results (existence, multiplicity
results, asymptotic behavior, . . . ), have been obtained for different classes of solution
models (see [1–6,8, 9] and the references therein).

The aim of this study is to carry out an existence analysis of the finite-energy static
solutions in more than one space dimension for a class of Lagrangian densities L which
include (1.4) with (r, p)-Laplacian.
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