SÉminaire de Mathématiques et Informatique

Université Djilali LiabèS - Sidi Bel AbBèS - Le 27 mai 2023

On k-balancing and k-cobalancing numbers

Ali DEBBACHE

Faculté de Mathématiques. USTHB.

Abstract :

$B \in \mathbb{N}^{*}$ is called a balancing number (respectively cobalancing number) if the Diophantine equation

$$
\begin{equation*}
1+2+\ldots+(B-1)=(B+1)+(B+2)+\ldots+(B+s) \tag{1}
\end{equation*}
$$

(respectively

$$
\begin{equation*}
1+2+\ldots+(b-1)+b=(b+1)+(b+2)+\ldots+(b+s) \tag{2}
\end{equation*}
$$

)
holds for some positive integer s which is called balancer (respectively cobalancer) corresponding to B (respectively b) [1].
One finds the successive solutions of (1) (resp. (2)), iff $\sqrt{8 B^{2}+1}$ (resp. $\sqrt{8 b^{2}+8 b+1}$) is a perfect square. Balancing (resp. cobalancing) numbers verify the recursive equation $B_{n+1}=6 B_{n}-B_{n-1}$ (resp. $b_{n+1}=6 b_{n}-b_{n-1}+2$.

More general balancing numbers can be extracted also from solutions of the Diophantine equation

$$
1^{h}+2^{h}+\ldots+(B-1)^{h}=(B+1)^{l}+(B+2)^{l}+\ldots+(B+s)^{l}
$$

We define k-balancing numbers by the sequence $\left(B_{k, n}\right)_{n}$ which verifies recursively $B_{k, n+1}=6 k B_{k, n}-B_{k, n-1}$ with the initials $B_{k, 0}=0$ and $B_{k, 1}=1$.

In this presentation, we give some properties of k-balancing and k-cobalancing numbers.

Keywords : Balancing numbers, Cobalancing numbers, Diophantine Equations, k-balancing numbers, k-cobalancing numbers

Mathematics Subject Classification : 11Bxx, 11Dxx, 11D59, 11Yxx

References

[1] Behera A. and Panda G.K. (1999) On the Square Roots of Triangular Numbers. Fibonacci Quart. 37 (2), 98-105.
[2] Beukers F. (2011) Diophantine equations. Springer.
[3] Cassels J.W.S. (1985) Local fields; London Mathematical sSociety,student, text 3.
[4] Gouvêa F.Q. (2020) p-adic Numbers : An Introduction. Springer.
[5] Olajos P. (2010) Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Ann. Math. Inform. 37, 125-138.
[6] Panda G.K. and Panda A.K. (2015) Almost Balancing Numbers. Jour. of the Indian Math. Soc. 82 (3-4), 147-156.

