TESTS D'AJUSTEMENT: TEST DE NORMALITÉ DE SHAPIRO-WILK TEST D'INDÉPENDANCE

Benchikh Tawfik

Faculté de Médecine, UDL, SBA 1^{ère} année Médecine

20 Mars 2024

PLAN DE COURS

AJUSTEMENT ANALYTIQUE ET PRINCIPAUX TESTS

2 TEST D'INDÉPENDANCE:

- Pour mettre en oeuvre un test d'ajustement, il faut:
 - prélever un échantillon suffisamment important de la population étudiée.
 - classer les observations par ordre croissant dans le cas d'une variable aléatoire discrète, les repartir en classes (par ordre croissant) pour une variable aléatoire continue, d'égale amplitude ou d'égale probabilité,
 - définir une variable de décision D permettant de mesurer les écarts entre la distribution théorique F et la distribution empirique F^* de l'échantillon

LES DÉMARCHES DE TEST (1)

- Pour vérifier la concordance des deux distributions, on doit:
 - définir les hypothèses H0 et H1,
 - \diamond H0: les observations suivent une distribution théorique spécifiée $F = F_0$.
 - \diamond H1: les observations ne suivent pas la distribution théorique spécifiée $F \neq F_0$.
 - accepter un risque de première espèce α de refuser l'hypothèse H0 alors qu'elle est vraie,

LES DÉMARCHES DE TEST (2)

- Calculer la valeur *d* de la variable de décision *D* (à partir des valeurs données par l'échantillon),
- énoncer une règle de décision:
 - \diamond on rejette l'hypothèse H0 si la valeur calculée d est supérieure à une valeur d_0 n'ayant qu'une probabilité α d'être dépassée par la variable D,
 - \diamond sinon, on garde l'hypothèse H0 et on considère que la distribution théorique spécifiée peut décrire le phénomène étudié, c'est-à-dire $F=F_0$.

TEST DU CHI-DEUX

- Le test du chi-deux utilise des propriétés de la loi multinomiale. Deux cas sont à distinguer:
 - la fonction de répartition F est entièrement spécifiée, en particulier, les paramètres sont connus,
 - on connaît seulement la forme de la loi de distribution, les paramètres de la fonction de répartition F sont estimés à partir d'un échantillon.

- Soit X la variable aléatoire parente, de fonction de répartition F.
- On considère une partition du domaine de définition en r intervalles $I_1, \ldots I_r$ d'égale étendue ou non.
- Pour chaque intervalle I_i , on considère l'ensemble E_i tel que:

$$E_i = \{\omega : X(\omega) \in I_i\}$$
 $p_i = \Pr(E_i)$

• $n*p_i$ est égal à la fréquence absolue (effectif) théorique espérée dans la classe I_i que l'on compare à la fréquence observée (effectif) N_i dans cette même classe I_i .

TEST DU CHI-DEUX: VARIABLE DE DÉCISION

C'est la statistique:

$$D^{2} = \sum_{i=1}^{r} \frac{(N_{i} - n * p_{i})^{2}}{n * p_{i}}$$

- Si l'hypothèse H0 est vraie (concordance acceptable entre la distribution théorique et les valeurs observées), cette quantité ne peut pas être trop grande.
- En fait, Pearson a montré que la statistique D² suit une loi du chi-deux, à n degrés de liberté quelle que soit la loi considérée, quand le nombre n d'observations tend vers l'infini.
- Le nombre n de degrés de liberté est égal à:
 - (r-1) si la distribution théorique est entièrement déterminée, aucun paramètre n'ayant été estimé,
 - (r-1-k) si k paramètres ont été estimés à partir des observations, pour définir complètement la distribution.

TEST DU CHI-DEUX: RÈGLE DE DÉCISION

- On rejette l'hypothèse H0 si la valeur de la statistique D^2 obtenue à partir de l'échantillon est supérieure à une valeur n'ayant qu'une probabilité α d'être dépassée par la variable χ^2 considérée.
- Sinon, on garde l'hypothèse H0 et on considère que la distribution théorique spécifiée est acceptable, c'est-à-dire $F=F_0$.

TEST DU CHI-DEUX: REMARQUES

- La distribution limite de la statistique D^2 est indépendante de la loi F, ce test peut donc être utilisé dans de nombreuses situations.
- Les effectifs de chaque classe doivent être supérieurs à cinq. Si cette condition n'est pas vérifiée, on regroupe les classes d'effectifs trop faibles.

TEST DU CHI-DEUX: EXEMPLE

- Sur 300 étudiants en Médecine (Fmed-SBA), la moyenne de la taille est de 1.75m avec un écart type estimé de 0.1m.
 Ces deux paramètres sont estimés à partir des données de cet échantillon.
- Vous avez observé 8 étudiants avec une taille inférieure à 1.55m; 40 avec une taille entre 1.55 et 1.65; 102 avec une taille entre 1.65 et 1.75 et 150 avec une taille supérieure à 1.75m
- La distribution de la taille des étudiants en Médecine peut elle être considérée comme suivant une loi normale ?

Moyenne estimée = 1.75, Écart type estimé = 0.1;

	<1.55	[1.55-1.65[[1.65-1.75[≥ 1.75	Total
Obs	8	40	102	150	300
Prob si	0.0228	0.1359	0.3413	0.5	
Loi norm					
Effec Théo	6.84	40.77	102.39	150	300

- $\chi^2_{cal} = 0.04$,
- DDL = 4 1 2 = 1; $\chi_{th}^2 = 3,84$
- Donc $\chi^2_{cal} = 0.04 < \chi^2_{th} = 3,84$ et p > 0,05.
- La distribution observée ne diffère pas de manière statistiquement significative d'une loi normale de paramètre (1.75; 0.1).

PRINCIPE

- On mesure deux variables aléatoires qualitatives dans une population notées X et Y.
 - On veut savoir si ces variables sont indépendantes, c'est-à-dire, si la connaissance d'une des v.a. peut influencer la loi de probabilité de l'autre.
- Le test d'indépendance du Khi2 permet de déterminer si deux variables qualitatives son indépendantes ou non, ou autrement dit, si les réponses de l'une conditionnent les réponses de l'autre.
- Pour cela, nous testons les deux hypothèses suivantes:
 - Hypothèse nulle : H0 : "les deux caractères sont indépendants" (X et Y sont indépendantes)
 - Hypothèse alternative : H1 : "les deux caractères ne sont pas indépendants" (X et Y sont liées)
- Remarque: Le test ne permet pas de connaître le sens de la dépendance.

DÉMARCHES

Le test se fait selon les étapes suivantes:

- Le test s'applique sur un tableau de contingence, expression qui désigne le tableau de croisement des deux variables qualitatives.
 - Un tableau de contingence est un tableau dans lequel les fréquences correspondent à deux variables: une variable est utilisée en ligne et l'autre en colonne.

YX	modalité 1		modalité j		modalité k	Total
échantillon 1	n_{11}		n_{1j}		n_{1k}	n_1 .
:	•	:	:	:	:	:
échantillon i	n_{i1}		n_{ij}		n_{ik}	n_{i} .
:	:	:	:	:	:	
échantillon h	n_{h1}		n_{hj}		n_{hk}	n_h .
Total	n.1		$n_{.j}$		$n_{.k}$	n

DÉMARCHES

 On calcule à partir du tableau de contingence pour chaque case ij, l'effectif calculé ou théorique en utilisant la formule suivante:

$$c_{ij} = \frac{n_{i.} * n_{.j}}{n_{..}}$$

• Le χ^2_{cal} relatif à l'ensemble des données est obtenu par la formule suivantes:

$$\chi_{cal}^2 = \sum_{i=1}^h \sum_{j=1}^k \frac{(n_{ij} - c_{ij})^2}{c_{ij}}.$$

DÉMARCHES

Le test se fait selon les étapes suivantes:

- Conditions d'application: $c_{ij} \ge 5$, pour tout i, j.
- Le nombre d'échantillons étant h et le nombre de classes étant k, le nombre de degré de liberté est donné par la formule : ddl = (h-1)(k-1).
- Etant donné un seuil de confiance $1-\alpha$, on utilise le tableau de χ^2 pour déterminer la valeur du $\chi^2_{th}=\chi^2_{1-\alpha}$ avec un ddl=(h-1)(k-1).
- Conditions d'application: $c_{ij} \geq 5$. pour tout i, j.
- Décision: on applique la règle de décision suivante:
 - Si $\chi^2_{cal} \geq \chi^2_{th}$, on rejette H0 et on accepte H1 avec le risque α .
 - Si $\chi^2_{cal} < \chi^2_{th}$, l'hypothèse H0 est retenue et H1 rejetée avec taux de sécurité 1α .

TEST DU CHI-DEUX: EXEMPLE

- Un hôpital enregistre le nombre de malades reçus dans un pavillon durant deux (2) périodes: Période Normale et Période avec Grippe. On note le nombre de morts et de survivants parmi ces mêmes malades, les résultats sont les suivants.
 - Période normale: nombre de morts 49, nombre de survivant 91.
 - Période avec Grippe: nombre de morts 49, nombre de survivant 91.
- Y-t-il une relation entre le nombre de malades (morts et vivants) et le type de période (normale, avec grippe) ?

TEST DU CHI-DEUX: SOLUTION

- On pose d'abord les hypothèses :
 - H0: "le nombre de malades (morts et vivants) est indépendant du type de période (normale, avec grippe)"
 - H1 : "le nombre de malades n'est pas indépendant du type de période
- Construisons le tableau de contingence avec le calcul des effectifs théoriques par la formule :

$$c_{ij} = \frac{n_{i.} * n_{.j}}{n_{..}}$$

	Nombre	Morts	survivant	Total
Période				
Période normale		49	91	$n_{1.} = 140$
		50.7	89.297	
Période avec grippe		18	27	$n_{2.} = 45$
		16.297	28.7	
Total		$n_{.1} = 67$	$n_{.2} = 118$	$n_{} = 185$

TEST DU CHI-DEUX: SOLUTION

• Sachant que tous les $c_{ij} \ge 5$, pour tout i,j: alors on procède au calcul de avec la formule :

$$\chi_{cal}^{2} = \sum_{i,j} \frac{(n_{ij} - c_{ij})^{2}}{c_{ij}}$$

$$= \frac{(49 - 50.7)^{2}}{50.7} + \frac{(91 - 89.297)^{2}}{89.297} + \frac{(18 - 16.297)^{2}}{16.297} + \frac{(27 - 28.7)^{2}}{28.7}$$

$$= 0.3681$$

- On déduit ensuite le χ_{th}^2 :
 - h = 2 et $k = 2 \Rightarrow ddl = (2 1) * (2 1) = 1$.
 - $\alpha = 5\%$ • D'où $\chi_{th}^2 = 3.84$.
- Conclusion : on a donc comme résultat :

 $\chi^2_{cal} = 0,3681 < \chi^2_{th} = 3,84$. L'hypothèse nulle H0 est retenue au seuil de confiance de 95%. Donc le nombre de malades (morts et vivants) est indépendant du type de période (normale, avec grippe) c'est-à-dire qu'il n'existe aucun lien entre eux, alors la période grippale est identique à la période normale en terme de taux de mortalités ou de survivants.