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Abstract

Coupled hyperbolic and parabolic systems have been widely studied in mathematical physics

and engineering due to their applications in heat conduction, elasticity, viscoelasticity, and ther-

momechanical interactions. These models describe various physical phenomena, such as wave

propagation in elastic media with thermal effects and fluid-structure interactions in porous mate-

rials. In particular, understanding the existence, uniqueness, and long-time behavior of solutions

to such systems is crucial for predicting their stability and response to external influences.

In this work, we consider a nonlinear coupled system consisting of a wave equation and a heat

equation defined in a bounded domain. First, we establish the well-posedness of solutions in both

the degenerate and non-degenerate cases, by using the Faedo-Galerkin scheme. Then, we prove

the exponential stability by constructing a suitable Lyapunov functional in the non-degenerate

case. We show that the general stability estimates in the degenerate case. The proof is based on

the multiplier method and general weighted integral inequalities proved by the second author in

[4], and some properties of convex functions, in particular, the dual function of convex function

to use the general Young and Jensen’s inequalities These arguments of convexity were introduced

and developed by Lasiecka et al. ([5], [6]), and used by Alabau-Boussouira [1]. Finally, we give

many significant examples to illustrate how to derive from our general estimates the polynomial,

exponential or logarithmic decay.
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