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Résumé

Soit @ la racine réelle de f (X) = X3 +4X +1, K = Q (0) la plus petite extension engendrée
par Q et 0, A son anneau des entiers et U son groupe des unités.

Si K une extension finie du corps Q des rationnels, au point de vue arithmétique. Le
corps K est bien connu si l'on sait déterminer ses entiers, ses unités, la maniére dont les
nombres premiers p se décomposent dans K, et le groupe des classes d’idéaux de K. Toutes
ses caractéristiques sont fortement liées; une maniére d’aborder le probléme est de chercher a
déterminer 'anneau des entiers A de K.

Comme A est un Z — module sans torsion de type fini, il est libre sur Z. Pour faciliter les
calculs, on a intérét & le chercher aussi simple que possible. En général, on essaie de trouver
une base d’entiers du type suivant : {1,a7 ey a"‘l} pour « € A, n=[K : Q]. Dans ce cas, on
peut écrire A = Z [a], et le calcul du discriminant du corps est aisé.

Le but de ce travail est de déterminer tous les entiers algébriques v, tel-que : A= Z[y].
On verra que cela revient & trouver les zéros d’une suite récurrente cubique, ou a calculer les
solutions entiéres d’une équation de Thue cubique, de déterminer son corps de décomposition,
ses différents sous-corps, son groupe de Galois, les différents sous-groupes du groupe de Galois,

ainsi que les nombres premiers qui se décomposent.
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