Accès chercheur

EEDIS Laboratory

Evolutionary Engineering


Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

Auteurs: » FARAOUN Kamel Mohamed
Type : Revue Internationale
Nom du journal : International Journal of Computer and Information Engineering ISSN:
Volume : 1 Issue: 10 Pages: 3111-3122
Lien : »
Publié le : 29-10-2007

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic â€¦

Tous droits réservés - © 2019 EEDIS Laboratory